With great Parsl comes great portability:

Using Parsl through CytoTable for harmonizing single-cell data

Introduction

- Dave Bunten
 Principal Research
 Software Engineer
- Department of Biomedical Informatics University of Colorado Anschutz Medical Campus School of Medicine
- Way Lab (Gregory P. Way)

Background

Bioinformatics:Image-based profiling

 Images of cells to numeric data (1000's of features)

Images: <u>Tomkinson et al., Plate 2 (Cell Painting images from Plate 2</u> for NF1_cellpainting_data project), 2023.

Why?

- Data derived from images help us understand biological phenomena.
- Information is used to help cure diseases and improve lives.
- Images are cost-effective to produce.

(<u>Travers et al., 2025, Cell Painting and</u>
<u>Machine Learning Distinguish Fibroblasts</u>
<u>From Nonfailing and Failing Human Hearts</u>)

Challenge

 Merging data is expensive and expressed differently in DataFrame libraries.

 Single-cell feature data entail many different schema and file formats from various ecosystems and microscopy products.

Solution

- CytoTable addresses these challenges through scalable data harmonization.
- We provide Parquet or AnnData output.

CytoTable + Parsl

- CytoTable uses Parsl to orchestrate paginated data harmonization.
- We implement map-reduce through paginated maps and concatenated reduction.

Portability + scale (!)

 CytoTable is managed using PyPI packages, including Parsl.

 Parsl config within CytoTable includes defaults with flexibility for overrides.

 Parsl is compatible with HPC, reducing compute barriers.

Solutions at Scale

 We find that CytoTable enables scalable memory and time performance when compared to existing methods.

Thank you! Questions/comments?

Find out more below!

GitHub organization: https://github.com/cytomining

GitHub repository: https://github.com/cytomining/CytoTable

Preprint:

https://www.biorxiv.org/content/10.1101/2025.06.19.660613v1